Nanopore unzipping of individual DNA hairpin molecules.

نویسندگان

  • Jérôme Mathé
  • Hasina Visram
  • Virgile Viasnoff
  • Yitzhak Rabin
  • Amit Meller
چکیده

We have used the nanometer scale alpha-Hemolysin pore to study the unzipping kinetics of individual DNA hairpins under constant force or constant loading rate. Using a dynamic voltage control method, the entry rate of polynucleotides into the pore and the voltage pattern applied to induce hairpin unzipping are independently set. Thus, hundreds of unzipping events can be tested in a short period of time (few minutes), independently of the unzipping voltage amplitude. Because our method does not entail the physical coupling of the molecules under test to a force transducer, very high throughput can be achieved. We used our method to study DNA unzipping kinetics at small forces, which have not been accessed before. We find that in this regime the static unzipping times decrease exponentially with voltage with a characteristic slope that is independent of the duplex region sequence, and that the intercept depends strongly on the duplex region energy. We also present the first nanopore dynamic force measurements (time varying force). Our results are in agreement with the approximately logV dependence at high V (where V is the loading rate) observed by other methods. The extension of these measurements to lower loading rates reveals a much weaker dependence on V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore

Studies on the interaction of hairpin DNA with the α-hemolysin (α-HL) nanopore have determined hairpin unzipping kinetics, thermodynamics, and sequence-dependent DNA/protein interactions. Missing from these results is a systematic study comparing the unzipping process for fishhook (one-tail) vs internal (two-tail) hairpins when they are electrophoretically driven from the cis to the trans side ...

متن کامل

Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores.

Nanopores have recently emerged as high-throughput tools for probing and manipulating nucleic acid secondary structure at the single-molecule level. While most studies to date have utilized protein pores embedded in lipid bilayers, solid-state nanopores offer many practical advantages which greatly expand the range of applications in life sciences and biotechnology. Using sub-2 nm solid-state n...

متن کامل

Stretching and unzipping nucleic acid hairpins using a synthetic nanopore

We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 < d < 2.3 nm ...

متن کامل

Unzipping kinetics of double-stranded DNA in a nanopore.

We studied the unzipping of single molecules of double-stranded DNA by pulling one of their two strands through a narrow protein pore. Polymerase chain reaction analysis yielded the first direct proof of DNA unzipping in such a system. The time to unzip each molecule was inferred from the ionic current signature of DNA traversal. The distribution of times to unzip under various experimental con...

متن کامل

Force fluctuations assist nanopore unzipping of DNA.

We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2004